Effect of Superparamagnetic Iron Oxide Nanoparticles-Labeling on Mouse Embryonic Stem Cells
نویسندگان
چکیده
OBJECTIVE Superparamagnetic iron oxide nanoparticles (SPIONs) have been used to label mammalian cells and to monitor their fate in vivo using magnetic resonance imaging (MRI). However, the effectiveness of phenotype of labeled cells by SPIONs is still a matter of question. The aim of this study was to investigate the efficiency and biological effects of labeled mouse embryonic stem cells (mESCs) using ferumoxide- protamine sulfate complex. MATERIALS AND METHODS In an experimental study, undifferentiated mESCs, C571 line, a generous gift of Stem Cell Technology Company, were cultured on gelatin-coated flasks. The proliferation and viability of SPION-labeled cells were compared with control. ESCs and embryoid bodies (EBs) derived from differentiated hematopoietic stem cells (HSCs) were analyzed for stage-specific cell surface markers using fluorescence-activated cell sorting (FACS). RESULTS Our observations showed that SPIONs have no effect on the self-renewal ability of mESCs. Reverse microscopic observations and prussian blue staining revealed 100% of cells were labeled with iron particles. SPION-labeled mESCs did not significantly alter cell viability and proliferation activity. Furthermore, labeling did not alter expression of representative surface phenotypic markers such as stage-specific embryonic antigen 1 (SSEA1) and cluster of differentiation 117 (CD117) on undifferentiated ESC and CD34, CD38 on HSCs, as measured by flowcytometry. CONCLUSION According to the results of the present study, SPIONs-labeling method as MRI agents in mESCs has no negative effects on growth, morphology, viability, proliferation and differentiation that can be monitored in vivo, noninvasively. Noninvasive cell tracking methods are considered as new perspectives in cell therapy for clinical use and as an easy method for evaluating the placement of stem cells after transplantation.
منابع مشابه
Cytotoxic Effect of Iron Oxide Nanoparticles on Mouse Embryonic Stem Cells by MTT Assay
Background: Despite the wide range of applications, there is a serious lack of information on the impact of the nanoparticles on human health and the environment. The present study was done to determine the range of dangerous concentrations of iron oxide nanoparticle and their effects on mouse embryonic stem cells. Methods: Iron oxide nanoparticles with less than 20 nanometers diameter were en...
متن کاملEvaluation of umbilical cord mesenchymal stem cell labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-lysine.
OBJECTIVE The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. METHODS The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dext...
متن کاملFunctional investigations on embryonic stem cells labeled with clinically translatable iron oxide nanoparticles.
Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capac...
متن کاملEffects of iron oxide nanoparticles on cardiac differentiation of embryonic stem cells.
The therapeutic potential of transplantation of embryonic stem cells (ESCs) in animal model of myocardial infarction has been consistently demonstrated. The development of superparamagnetic iron oxide (SPIO) nanoparticles labeling and cardiac magnetic resonance imaging (MRI) have been increasingly used to track the migration of transplanted cells in vivo allowing cell fate determination. Howeve...
متن کاملThe effect of different concentrations of iron oxide nanoparticles on the expression of p53 gene in human amniotic membrane-derived mesenchymal stem cells
Superparamagnetic iron oxide nanoparticles (SPIONs) have made extensive advances in nanotechnology. The unique properties of these particles have expanded their application in various fields, including medicine. One of these applications is non-invasive analysis for cell tracking. However, the possibility of toxicity in cells is reported by these nanoparticles. Due to the fact that cellular dam...
متن کامل